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1 sSet as a sSet-enriched category

1 sSet as a sSet-enriched category

1.1 Preliminaries

• Symmetric monoidal categories.

• Basic definition of enrichment over monoidal categories.

• Theory of Anodyne extension in sSet. Refer Chapter-1 Section-4 in Jardine.

• Some technical details will be skipped in the interest of time (especially toward the end).
And especially those that detract from the main topic at hand.

• We mainly use the language of Jardine - Simplicial Homotopy theory.

• Some references are also taken from Chapter-3 and Chapter-10 of Emily’s Categorical
Homotopy Theory book.

• Main duration of time will be given to discussing sSet as being a simplicial model category.

1.2 sSet as a symmetric monoidal category

We can use the categorical product of two simplices denoted by × as the tensor product functor
⊗ : sSet × sSet → sSet. That is, 𝐾 ⊗ 𝐿 = 𝐾 × 𝐿. This product is symmetric, associative and
unital with the terminal object ∗.

Recall that sSet is a category of presheaves. Every small limit and colimit is computed element-
wise. That is, (𝐾 × 𝐿)𝑛 = 𝐾𝑛 × 𝐿𝑛 with obvious face and degeneracy maps. This ensures the
symmetric, associative and unital properties inherited from cartesian product of sets.

We do not go into the details of this verification.

1.3 sSet as sSet enriched category

There is a notion of internal hom in sSet, denoted by

[·, ·] : sSet𝑜𝑝 × sSet → sSet

and defined as
[𝐾, 𝐿]𝑛 = homsSet(Δ𝑛 × 𝐾,𝑌 )
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1 sSet as a sSet-enriched category

The structure maps are defined by precomposition in the natural sense. Let 𝜃 : [𝑚] → [𝑛].
Then then corresponding structure map is given as

homsSet(Δ𝑛 × 𝐾,𝑌 ) → homsSet(Δ𝑚 × 𝐾,𝑌 )

(Δ𝑛 × 𝐾 → 𝑌 ) ↦→ (Δ𝑚 × 𝐾 𝜃×1−−−→ Δ𝑛 × 𝐾 → 𝑌 )

To see the functoriality of [·, ·]. Pick any map 𝑓 : 𝐾1 → 𝐾2. This defines a map [𝐾2, 𝐿] → [𝐾1, 𝐿]
by levelwise precomposition with 1 × 𝑓 . Likewise, for any map 𝑔 : 𝐿1 → 𝐿2, we can define a
map from [𝐾, 𝐿1] → [𝐾, 𝐿2] by post composition.

Part of the definition of internal hom also requires that we obtain an adjoint pair (· ×𝐾) ⊣ [𝐾, ·]
for all 𝐾 ∈ sSet. That is, we want to show the natural isomorphism

homsSet(𝑋 × 𝐾, 𝐿) � homsSet(𝑋, [𝐾, 𝐿])

which is natural in 𝑋, 𝐿. (Also natural in 𝐾 in addition).

This will require us to define another map called the evaluation map 𝑒𝑣 : [𝐾, 𝐿] × 𝐾 → 𝐿. The
map is defined by sending any (𝑓 , 𝑘) ↦→ 𝑓 (𝑖𝑛, 𝑘) where 𝑖𝑛 ∈ Δ𝑛 is the unique 𝑛-simplex. It is
straightforward to check that 𝑒𝑣 is a simplicial map. Moreover, 𝑒𝑣 is also natural in both 𝐾 and
𝐿 in the following sense:

[𝐾1, 𝐿] × 𝐾1 [𝐾, 𝐿1] × 𝐾 𝐿1

𝐿

[𝐾2, 𝐿] × 𝐾2 [𝐾, 𝐿2] × 𝐾 𝐿2

𝑒𝑣

𝑓 𝑔∗×1

𝑒𝑣

𝑔

𝑒𝑣

(1×𝑓 )∗

𝑒𝑣

The first diagram says that 𝑒𝑣 ((1 × 𝑓 )∗𝛼2, 𝑘1) = 𝑒𝑣 (𝛼2, 𝑓 (𝑘1)) and the second implies that
𝑔 ◦ 𝑒𝑣 (𝛼1, 𝑘1) = 𝑒𝑣 ((𝑔∗ × 1) (𝛼1, 𝑘1))

Finally, we define the map 𝑒𝑣∗ : homsSet(𝑋, [𝐾, 𝐿]) → homsSet(𝑋 × 𝐾, 𝐿) as post composition
with 𝑒𝑣∗ in the following sense:

(𝑋
𝑔
−→ [𝐾, 𝐿]) ↦→ (𝑋 × 𝐾

𝑔×1
−−−→ [𝐾, 𝐿] × 𝐾 𝑒𝑣−→ 𝐿)

This map has the following inverse. Pick any ℎ′ : 𝑋 × 𝐾 → 𝐿. Define the map ℎ : 𝑋 → [𝐾, 𝐿]
by setting

ℎ(𝑥) = Δ𝑛 × 𝐾 𝑋 × 𝐾 𝐿
𝛼𝑥×1 ℎ′

The evaluation map 𝑒𝑣 : [𝐾, ·] ×𝐾 → · defines the counit of the adjunction as it is the transpose
of the identity map [𝐾, ·] → [𝐾, ·]. This data with homsSet isomorphism is sufficient to claim
the adjunction. Moreover, the naturality in 𝐾 follows from the (tedious) diagram
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1 sSet as a sSet-enriched category

homsSet(𝑋 × 𝐾1, 𝐿) homsSet(𝑋, [𝐾1, 𝐿])

homsSet(𝑋 × 𝐾2, 𝐿) homsSet(𝑋, [𝐾2, 𝐿])

𝑒𝑣∗

(1×𝑓 )∗

𝑒𝑣∗

( (1×𝑓 )∗ )∗

We also find that the functor [·, 𝐿] : sSet𝑜𝑝 → sSet ismutually right adjoint to itself. Refer to
Emily’s book Chapter-4 Section-3.

That is, we have the following chain of natural isomorphisms:

homsSet(𝑋, [𝐾, 𝐿]) � homsSet(𝑋 × 𝐾, 𝐿) � homsSet(𝐾 × 𝑋, 𝐿) � homsSet(𝐾, [𝑋, 𝐿])

where the center natural isomorphism is induced by the natural isomorphism 𝜏 : 𝑋 ×𝐾 → 𝐾 ×𝑋
by flipping. Recall that 𝑋 × 𝐾 level wise is just cartesian product of Sets.

By virtue of above, we would also like to label [𝐾, 𝐿] = 𝐿𝐾 , which is called the power object. As
you might guess, hom object and power object need not always be same in the general case.

Lastly, we justify the notion of calling the functor [·, ·] as internal “hom”. In some sense, it also
satisfy an “adjunction”.

[𝑋 × 𝐾, 𝐿] � [𝑋, [𝐾, 𝐿]] � [𝐾, [𝑋, 𝐿]]

which is natural in 𝑋,𝐾, 𝐿. The proof follows by noting that [𝑋 × 𝐾, 𝐿] and [𝑋, [𝐾, 𝐿]] are
representably isomorphic. The above is what we call as the property of being tensored and
cotensored over sSet.

Consequentially, we define another notation for internal hom given by homsSet(·, ·) = [·, ·]. We
also coin the term function complex for this.

Where does the enrichment come? Let 𝑓 : Δ𝑛 ×𝐴 → 𝐵 and 𝑔 : Δ𝑛 × 𝐵 → 𝐶 . We can define a
composition pairing as:

◦ : homsSet(𝐵,𝐶) × homsSet(𝐴, 𝐵) → homsSet(𝐴,𝐶)

giving the map

Δ𝑛 ×𝐴 𝑑×1−−−→ (Δ𝑛 × Δ𝑛) ×𝐴 � Δ𝑛 × (Δ𝑛 ×𝐴)
1×𝑓
−−−→ Δ𝑛 × 𝐵

𝑔
−→ 𝐶

where 𝑑 : Δ𝑛 → Δ𝑛 × Δ𝑛 is the diagonal map.

It can be verified that the pairing is associative and unital with the image of ∗ → [𝐵, 𝐵] where
∗ is the terminal object in sSet with the map defined by sending the vertex ∗ ↦→ 1𝐵 . In other
words, we are picking the simplicial subset generated by the vertex 1𝐵 .
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1 sSet as a sSet-enriched category

All of the above information can be condensed by claiming that sSet is enriched over sSet with
pairing ◦ that is associative and unital with the unit object described above. But a little more is
true, sSet is also tensored and cotensored over itself such that the underlying category is sSet.

The reason why function complexes are so important is their relation to the theory of anodyne
maps in sSet. From now on, we use the standard Quillen model structure on simplicial sets. We
note the following result first without a complete proof.

Theorem 1.1. Let 𝑖 : 𝐾 → 𝐿 be a cofibration and 𝑗 : 𝐴 → 𝐵 be a cofibration for some
𝐾, 𝐿,𝐴, 𝐵 ∈ sSet. Then the map

(𝑖 × 1) ∪ (1 × 𝑗) : (𝐾 × 𝐵) ∪(𝐾×𝐴) (𝐿 ×𝐴) → 𝐿 × 𝐵

is a cofibration which is trivial if either 𝑗 or 𝑖 is.

Proof. The map is induced by the pushout square

𝐿 ×𝐴

𝐾 ×𝐴

(𝐾 × 𝐵) ∪𝐾×𝐴 (𝐿 ×𝐴)

𝐾 × 𝐵

𝐿 × 𝐵

1× 𝑗

𝑖×1

1× 𝑗

𝑖×1

It can be checked that this map is a cofibration by working levelwise.

The part regarding 𝑗 or 𝑖 being trivial is a bit more complicated. We need a dual notion to the
above diagram. To this end, we obtain function complexes naturally. □

Define the axiom SM7 as the following:

Suppose 𝑗 : 𝐴 → 𝐵 is a cofibration and 𝑞 : 𝑋 → 𝑌 is a fibration. Then the map

homsSet(𝐵,𝑋 )
( 𝑗∗,𝑞∗ )−−−−−→ homsSet(𝐴,𝑋 ) ×homsSet (𝐴,𝑌 ) homsSet(𝐵,𝑌 )

is a fibration. Moreover, it is trivial if 𝑗 or 𝑞 is.

Lemma 1.2. Axiom SM7 is equivalent to Theorem 1.1

Proof. Pick any cofibration 𝑖 : 𝐾 → 𝐿 and consider the commuting square:
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1 sSet as a sSet-enriched category

𝐾 homsSet(𝐵,𝑋 )

𝐿 homsSet(𝐴,𝑋 ) ×homsSet (𝐴,𝑌 ) homsSet(𝐵,𝑌 )

𝑖 ( 𝑗∗,𝑞∗ )

This commuting square is equivalent to writing

𝐾 homsSet(𝐵,𝑋 ) homsSet(𝐴,𝑋 )

𝐿 homsSet(𝐵,𝑌 ) homsSet(𝐴,𝑌 )

𝑖 𝑞∗

𝑗∗

𝑞∗

𝑗∗

Using the internal hom and product adjunction (which was natural in all three variables), we
can write the dual diagram

𝐾 ×𝐴 𝐾 × 𝐵 𝑋

𝐿 ×𝐴 𝐿 × 𝐵 𝑌

1× 𝑗

𝑖×1 𝑖×1 𝑞

1× 𝑗

Finally, the above diagram is equivalent to the following:

(𝐾 × 𝐵) ∪(𝐾×𝐴) (𝐿 ×𝐴) 𝑋

𝐿 × 𝐵 𝑌

(𝑖×1)∪(1× 𝑗 ) 𝑞

Now we just use the lifting properties of fibrations and cofibrations.

□

Theorem 1.3. A simplicial map 𝑔 :𝑊 → 𝑍 is a trivial fibration iff it has the right lifting property
with respect to all boundary inclusions 𝜕Δ𝑛 ⊆ Δ𝑛 for 𝑛 ≥ 0.

Theorem 1.4. A simplicial map 𝑔 :𝑊 → 𝑍 is a fibration iff it has the right lifting property with
respect to all horn inclusions Λ𝑛

𝑘
⊆ Δ𝑛 for all 𝑛 ≥ 0.
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1 sSet as a sSet-enriched category

Theorem 1.4 might be regarded as a definition depending upon your perspective.

This result will be skipped as theorem 1.3 requires the theory of minimal fibrations. But it is
central to the proof of Theorem 1.1. Instead of proving theorem 1.1, we prove the SM7 axiom
as it is much simpler in light of Theorem 1.3 and 1.4.

Proof. Axiom SM7:

Consider any diagram

Λ𝑛
𝑘

homsSet(𝐵,𝑋 )

Δ𝑛 homsSet(𝐴,𝑋 ) ×homsSet (𝐴,𝑌 ) homsSet(𝐵,𝑌 )

𝑖 ( 𝑗∗,𝑞∗ )

We want to show that this diagram has a lift. This is equivalent to asking that the following
diagram must have a lift

(Λ𝑛
𝑘
× 𝐵) ∪(Λ𝑛

𝑘
×𝐴) (Δ𝑛 ×𝐴) 𝑋

Δ𝑛 × 𝐵 𝑌

(𝑖×1)∪(1× 𝑗 ) 𝑞

However, it is known that the map on left is an anodyne map because Λ𝑛
𝑘
⊆ Δ𝑛 is anodyne and

𝐴 → 𝐵 is a cofibration. Consequentially, the lift exists and the desired map is always a fibration.

Now suppose that 𝑞 is trivial and consider any diagram whose lift we desire

𝜕Δ𝑛 homsSet(𝐵,𝑋 )

Δ𝑛 homsSet(𝐴,𝑋 ) ×homsSet (𝐴,𝑌 ) homsSet(𝐵,𝑌 )

𝑖 ( 𝑗∗,𝑞∗ )

This is equivalent to the diagram

(𝜕Δ𝑛 × 𝐵) ∪(𝜕Δ𝑛×𝐴) (Δ𝑛 ×𝐴) 𝑋

Δ𝑛 × 𝐵 𝑌

(𝑖×1)∪(1× 𝑗 ) 𝑞
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1 sSet as a sSet-enriched category

We have already shown that the map on the left is a cofibration. The map on the right is a trivial
fibration by assumption and so the lift exists.

Finally suppose that 𝑗 is trivial and consider any diagram whose lift we desire

𝜕Δ𝑛 homsSet(𝐵,𝑋 )

Δ𝑛 homsSet(𝐴,𝑋 ) ×homsSet (𝐴,𝑌 ) homsSet(𝐵,𝑌 )

𝑖 ( 𝑗∗,𝑞∗ )

This is equivalent to demanding a lift for

(𝜕Δ𝑛 × 𝐵) ∪(𝜕Δ𝑛×𝐴) (Δ𝑛 ×𝐴) 𝑋

Δ𝑛 × 𝐵 𝑌

(𝑖×1)∪(1× 𝑗 ) 𝑞

Since 𝑗 is anodyne, the map on the left is also anodyne. Therefore, the desired lift exists.

□

Consequentially, Theorem 1.1 is proven as desired. The key takeaway is that the function
complexes somehow encode a special relationwith the anodynemaps of simplicial sets. Theorem
1.1 states a property which we would take intuitively when dealing with CW-complexes, and
which is justified below. In some sense, it is a desirable property that we would like to have for
any “simplicially enriched” category.

There is an equivalent axiom SM7b which is easier to verify. The ’b’ refers to it being dual.

Let 𝑗 : 𝐴 → 𝐵 be a cofibration for some 𝐴, 𝐵 ∈ sSet. Then the map

(𝑖 × 1) ∪ (1 × 𝑗) : (𝜕Δ𝑛 × 𝐵) ∪(𝜕Δ𝑛×𝐴) (Δ𝑛 ×𝐴) → Δ𝑛 × 𝐵

is a cofibration, which is trivial if 𝑗 is. And the map

(𝑖 × 1) ∪ (1 × 𝑗) : (Λ𝑛
𝑘
× 𝐵) ∪(Λ𝑛

𝑘
×𝐴) (Δ𝑛 ×𝐴) → Δ𝑛 × 𝐵

is a trivial cofibration.

Proof. Use Theorem 1.3 and 1.4 □

With the axiom SM7 and the simplicial enrichment, we form sSet as a simplicial model category.
That is, sSet is a simplicially enriched categorywhosemodel structure interact with the simplicial
enrichment by the axiom SM7.
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2 Simplicial Model Categories

2 Simplicial Model Categories

2.1 sSet enriched categories

Keeping in mind the desired axiom SM7b, we want to provide any category C such a structure.

We call a category C as sSet-enriched if it has a “Mapping space” functor:

homC (·, ·) : C𝑜𝑝 × C → sSet

such that for all 𝐴, 𝐵 ∈ C and 𝐾, 𝐿 ∈ sSet, we have the following three conditions:

• homsSet(∗, homC (𝐴, 𝐵)) � homC (𝐴, 𝐵)0 = homC (𝐴, 𝐵). Which can also be translated as
saying that the underlying category is C itself.

• The functor homC (𝐴, ·) : C → sSet has a left adjoint · ⊗ 𝐴 : sSet → C such that there is
a natural isomorphism (𝐾 × 𝐿) ⊗ 𝐴 � 𝐾 ⊗ (𝐿 ⊗ 𝐴) which is natural in all three variables.
In other words, homsSet(𝐾, homC (𝐴, 𝐵)) � homC (𝐾 ⊗ 𝐴, 𝐵) which is natural in 𝐾 and 𝐵.

Moreover, 𝐾 ⊗ · : C → C defines a functor by sending the map 𝑓 : 𝐴1 → 𝐴2 to a map
1 ⊗ 𝑓 : 𝐾 ⊗ 𝐴1 → 𝐾 ⊗ 𝐴2 so that it correspond to the map homsSet(𝐾, homC (𝐴2, 𝐵)) →
homsSet(𝐾, homC (𝐴1, 𝐵)) induced by 𝑓 via the natural isomorphism. In particular, we
extended the isomorphism to be natural in all three variables.

• The functor homC (·, 𝐵) : C𝑜𝑝 → sSet has a mutual right adjoint 𝐵− : sSet𝑜𝑝 → C.
In particular, we have a natural isomorphism homsSet(𝐾, homC (𝐴, 𝐵)) � homC (𝐴, 𝐵𝐾 )
which is natural in 𝐾 and 𝐴.

Moreover, ·𝐾 : C → C defines a functor by sending the map 𝑓 : 𝐵1 → 𝐵2 to a
map 𝑓 𝐾 : 𝐵𝐾1 → 𝐵𝐾2 so that it correspond to the map homsSet(𝐾, homC (𝐴, 𝐵1)) →
homsSet(𝐾, homC (𝐴, 𝐵2)) induced by 𝑓 via the natural isomorphism. In particular, we
extended the isomorphism to be natural in all three variables.

Precisely speaking we should be calling the category C as closed sSet-module. It is also known
that each closed sSet-module correspond to a unique sSet-enriched category that is tensored
and cotensored (we will see this later), and whose underlying adjunction of the sSet-enriched
tensor-cotensor-hom adjunction is the given adjunction unenriched (Set) adjunction. Refer to
chapter 10 Section 1 in Emily’s Categorical Homotopy Theory and also chapter 3 section 7.

We begin by noting some immediate consequences of the above definition.

Lemma 2.1. There is an adjoint pair (𝐾 ⊗ ·) ⊣ ·𝐾 .
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2 Simplicial Model Categories

Proof. This follows from the chain of natural isomorphisms

homC (𝐾 ⊗ 𝐴, 𝐵) � homsSet(𝐾, homC (𝐴, 𝐵)) � homC (𝐴, 𝐵𝐾 )

which is natural in all three variables. □

Lemma 2.2. There is a natural isomorphism 𝐵𝐿×𝐾 � 𝐵𝐾×𝐿 � (𝐵𝐾 )𝐿 � (𝐵𝐿)𝐾 for all 𝐾, 𝐿 ∈ sSet
and 𝐵 ∈ C.

Proof. The center one follows from the following chain of natural ismorphisms for any 𝐴 ∈ C.

homC (𝐴, 𝐵𝐾×𝐿) � homC ((𝐾 × 𝐿) ⊗ 𝐴, 𝐵)

� homC (𝐾 ⊗ (𝐿 ⊗ 𝐴), 𝐵) � homC (𝐿 ⊗ 𝐴, 𝐵𝐾 ) � homC (𝐴, (𝐵𝐾 )𝐿)

The rest follows from using the natural isomorphism 𝐾 × 𝐿 � 𝐿 × 𝐾 . □

Lemma 2.3. For all 𝑛 ≥ 0, we have homC (𝐴, 𝐵)𝑛 � homC (Δ𝑛 ⊗ 𝐴, 𝐵)

Proof. By Yoneda Lemma, we have

homC (𝐴, 𝐵)𝑛 � homsSet(Δ𝑛, homC (𝐴, 𝐵)) � homC (Δ𝑛 ⊗ 𝐴, 𝐵)

□

Our first goal is to discuss why this definition is equivalent to claiming that there is an enrichment
of C over sSet in the sense that there is a associative pairing

◦ : homC (𝐵,𝐶) × homC (𝐴, 𝐵) → homC (𝐴,𝐶)

with a natural choice of unit.

Let 𝑓 ∈ homC (𝐴, 𝐵)𝑛 and 𝑔 ∈ homC (𝐵,𝐶)𝑛 . We can define a composition pairing as giving the
map

Δ𝑛 ⊗ 𝐴 𝑑×1−−−→ (Δ𝑛 × Δ𝑛) ⊗ 𝐴 � Δ𝑛 ⊗ (Δ𝑛 ⊗ 𝐴)
1×𝑓
−−−→ Δ𝑛 ⊗ 𝐵

𝑔
−→ 𝐶

where 𝑑 : Δ𝑛 → Δ𝑛 × Δ𝑛 is the diagonal map. This pair is associative and unital with the unit
being the image of ∗ → homC (𝐴,𝐴) where ∗ is the terminal object in sSet with the map defined
by sending the vertex ∗ ↦→ 1𝐴.

In particular, C is enriched over sSet in the expected sense.

There is also an analogue of internal hom adjunction as in the case of simplicial sets. And this
is what guarantees the property of being tensored and cotensored over sSet.
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2 Simplicial Model Categories

Lemma 2.4. We have the following natural isomorphisms (natural in 𝐾 ∈ sSet and 𝐴, 𝐵 ∈ C)

• homsSet(𝐾, homC (𝐴, 𝐵)) � homC (𝐾 ⊗ 𝐴, 𝐵)

• homsSet(𝐾, homC (𝐴, 𝐵)) � homC (𝐴, 𝐵𝐾 )

Proof. Write homsSet(·, ·) as [·, ·] like in our older notation.

Choose any 𝐿 ∈ sSet and note the following:

homsSet(𝐿, [𝐾, homC (𝐴, 𝐵)]) � homsSet(𝐿 × 𝐾, homC (𝐴, 𝐵)) � homsSet((𝐿 × 𝐾) ⊗ 𝐴, 𝐵)

� homsSet(𝐿 ⊗ (𝐾 ⊗ 𝐴), 𝐵) � homsSet(𝐿, homC (𝐾 ⊗ 𝐴, 𝐵))
Therefore, we are done. □

There is an equivalent important formulation (only for sSet) in terms of the existence of the
functors · ⊗ · : sSet × C → C and ·− : sSet𝑜𝑝 × C → C

Lemma 2.5. Let C be a category equipped with a functor

· ⊗ · : sSet × C → C

such that the following holds:

1. For a fixed 𝐾 ∈ sSet, 𝐾 ⊗ · : C → C has a right adjoint ·𝐾 : C → C.

2. For fixed 𝐴 ∈ C, the functor · ⊗ 𝐴 : sSet → C commutes with arbitrary colimits and
𝐴 ⊗ ∗ � 𝐴.

3. (𝐾 × 𝐿) ⊗ 𝐴 � 𝐾 ⊗ (𝐿 ⊗ 𝐴) naturally in 𝐾, 𝐿 ∈ sSet and 𝐴 ∈ C.

Then C is a simplicially enriched category with

homC (𝐴, 𝐵)𝑛 = homC (Δ𝑛 ⊗ 𝐴, 𝐵)

Proof. By the density theorem 𝐾 = colim Δ𝑛 (over the category of simplices of 𝐾 ) we have,

homsSet(𝐾, homC (𝐴, 𝐵)) � lim homsSet(Δ𝑛, homC (𝐴, 𝐵)) � lim homC (𝐴, 𝐵)𝑛

= lim homC (Δ𝑛 ⊗ 𝐴, 𝐵) � homC (colim(Δ𝑛 ⊗ 𝐴), 𝐵) � homC (𝐾 ⊗ 𝐴, 𝐵)
This provides the desired natural isomorpism. Rest is straightforward by using the given
adjunction in (1), that is, homC (𝐾 ⊗ 𝐴, 𝐵) � homC (𝐴, 𝐵𝐾 ). □

We now return back to the example to sSet to makes thing clear.

Lemma 2.6. sSet is simplicially enriched by the two functors

𝐾 ⊗ 𝐴 = 𝐾 ×𝐴

𝐵𝐾 = [𝐾, 𝐵]

12
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2.2 Simplicial model categories

We can now discuss the notion of generalized axiom SM7.

Definition 1. Axiom SM7: Let C be a model category which is sSet enriched. For 𝐴, 𝐵,𝑋,𝑌 ∈ C,
let 𝑗 : 𝐴 → 𝐵 be a cofibration and 𝑞 : 𝑋 → 𝑌 a fibration. Then,

homC (𝐵,𝑋 )
( 𝑗∗,𝑞∗ )−−−−−→ homC (𝐴,𝑋 ) ×homC (𝐴,𝑌 ) homC (𝐵,𝑌 )

is a fibration. Moreover, it is trivial if 𝑗 or 𝑞 is trivial.

Such categories satisfying SM7 will be called simplicial model categories.

Just as in the case of simplicial sets, we have the following theorem:

Theorem 2.7. Axiom SM7 is equivalent to the following:

Let 𝑖 : 𝐾 → 𝐿 be a cofibration in sSet and 𝑗 : 𝐴 → 𝐵 be a cofibration in C. Then the map

(𝑖 ⊗ 1) ∪ (1 ⊗ 𝑗) : (𝐾 ⊗ 𝐵) ∪(𝐾⊗𝐴) (𝐿 ⊗ 𝐴) → 𝐿 ⊗ 𝐵

is a cofibration. Moreover, it is trivial if either 𝑗 or 𝑖 is trivial.

However, in the general case, there is one more equivalent notion involving the functor 𝐵𝐾 .

Theorem 2.8. Axiom SM7 is equivalent to the following:

Let 𝑖 : 𝐾 → 𝐿 be a cofibration in sSet and 𝑞 : 𝑋 → 𝑌 a fibration in C. Then,

𝑋𝐿
(𝑋 𝑖 ,𝑞𝐿 )
−−−−−−→ 𝑋𝐾 ×𝑌𝐾 𝑌𝐿

is a fibration. Moreover, it is trivial if either 𝑖 or 𝑞 is trivial.

There are also similar weakening of the requirement as done in the case of simplicial sets.

Lemma 2.9. Axiom SM7 is equivalent to the following Axiom SM7b:

Let 𝑗 : 𝐴 → 𝐵 be a cofibration in C. Then the map

(𝑖 ⊗ 1) ∪ (1 ⊗ 𝑗) : (𝜕Δ𝑛 ⊗ 𝐵) ∪(𝜕Δ𝑛⊗𝐴) (Δ𝑛 ⊗ 𝐴) → Δ𝑛 ⊗ 𝐵

is a cofibration, which is trivial if 𝑗 is. And the map

(𝑖 ⊗ 1) ∪ (1 ⊗ 𝑗) : (Λ𝑛
𝑘
⊗ 𝐵) ∪(Λ𝑛

𝑘
⊗𝐴) (Δ𝑛 ⊗ 𝐴) → Δ𝑛 ⊗ 𝐵

is a trivial cofibration.

13



2 Simplicial Model Categories

Lemma 2.10. Axiom SM7 is equivalent to the following Axiom SM7a:

Let 𝑞 : 𝑋 → 𝑌 a fibration in C. Then the map

𝑋Δ𝑛 (𝑋 𝑖 ,𝑞𝐿 )
−−−−−−→ 𝑋 𝜕Δ

𝑛 ×𝑌 𝜕Δ𝑛 𝑌Δ𝑛

is a fibration, which is trivial if 𝑗 is. And the map

𝑋Δ𝑛 (𝑋 𝑖 ,𝑞𝐿 )
−−−−−−→ 𝑋Λ𝑛

𝑘 ×
𝑌
Λ𝑛
𝑘
𝑌Δ𝑛

is a trivial fibration.

An important consequence homotopy theoretic consequence of SM7 is the existence of a natural
choice of good cylinder object Δ1 ⊗ 𝐴 for cofibrant 𝐴 ∈ C and good path object 𝑋Δ1 for fibrant
𝑋 ∈ C. We work toward this by noting the following lemmas.

Lemma 2.11. Let C be a simplicial model category and 𝑞 : 𝑋 → 𝑌 be a fibration. Let 𝜙 → 𝐵 be a
cofibration (or 𝐵 is cofibrant). Then,

𝑞∗ : homC (𝐵,𝑋 ) → homC (𝐵,𝑌 )

is a fibration. Which is trivial if 𝑞 is.

Similarly, if 𝑗 : 𝐴 → 𝐵 is a cofibration and 𝑋 → ∗ is a fibration (or 𝑋 is fibrant). Then,

𝑗∗ : homC (𝐵,𝑋 ) → homC (𝐴,𝑋 )

is a fibration. Which is trivial if 𝑗 is.

As usual, we can use the adjoint relation to form equivalent notion in terms of 𝐵𝐾 and 𝐾 ⊗ 𝐴
functors.

Lemma 2.12. Let C be a simplicial model category. Let 𝜙 → 𝐵 be a cofibration in C (or 𝐵 is
cofibrant) and 𝑖 : 𝐾 → 𝐿 be a cofibration in sSet. Then,

𝑖 ⊗ 1 : 𝐾 ⊗ 𝐵 → 𝐿 ⊗ 𝐵

is a cofibration in C. Which is trivial if 𝑖 is.

Similarly, if 𝑋 → ∗ is a fibration (or 𝑋 is fibrant). Then,

𝑋 𝑖 : 𝑋𝐿 → 𝑋𝐾

is a fibration in C. Which is trivial if 𝑖 is.

14
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Define the map 𝑑1 ⊔ 𝑑0 : 𝐵 ⊔ 𝐵 → Δ1 ⊗ 𝐵 as

𝐵 ⊔ 𝐵 � (∗ ⊗ 𝐵) ⊔ (∗ ⊗ 𝐵) � (∗ ⊔ ∗) ⊗ 𝐵 � 𝜕Δ1 ⊗ 𝐵
(𝑑1⊔𝑑0 )⊗1
−−−−−−−−→ Δ1 ⊗ 𝐵

Since 𝜕Δ1 ↩→ Δ1 is a cofibration, the map 𝑑1 ⊔ 𝑑0 : 𝐵 ⊔ 𝐵 → Δ1 ⊗ 𝐵 is a cofibration.

Also consider the map 𝑞 ⊗ 1 : Δ1 ⊗ 𝐵 → 𝐵 defined using 𝑞 : Δ1 → ∗ as follow

𝑞 ⊗ 1 : Δ1 ⊗ 𝐵 → ∗ ⊗ 𝐵 � 𝐵

Then it is clear that 𝐵 ↩→ 𝐵⊔𝐵 𝑑1⊔𝑑0−−−−→ Δ1⊗𝐵
𝑞⊗1
−−−→ 𝐵 is identity. We know that ∗⊔𝐵 → Δ1⊔𝐵 is a

acyclic cofibration from lemma 1.16. Consequentially, by 2-of-3, 𝑞 ⊗ 1 is also a weak equivalence.

Lastly, we have the diagram

𝐵 ⊔ 𝐵 Δ1 ⊗ 𝐵

𝐵

𝑑1⊔𝑑0

𝑖𝑑𝐵⊔𝑖𝑑𝐵
𝑞⊗1

showing that we have got a good cylinder object.

On the other hand, we can also show that 𝑋 ∗ � 𝑋 and 𝑋 𝜕Δ1
� 𝑋 × 𝑋 . Consequentially, with

similar proof as above, we will find that 𝑋Δ1 is a good path ojbect.

𝑋Δ1

𝑋 𝑋 × 𝑋

𝑋𝑑
1⊔𝑑0

(𝑖𝑑𝑋 ,𝑖𝑑𝑋 )

𝑋𝑞

2.3 Examples of sSet categories

There is a notion of simplicial objects just as there is a notion of simplicial sets. Let C be any
category and ∆ be the simplex category. We define 𝑠C = [∆𝑜𝑝 , C] as the functor category. Just
as sSet could be naturally turned into a simplicially enriched category, one might expect 𝑠C
to be turned as well. The only requirement is that we want C to be complete and co-complete
(just like Set is). The assumption that𝐶 is co-complete allows us to define “coproduct” copower.

Let 𝐾 ∈ sSet and 𝑋 ∈ 𝑠C. Then we define,

(𝐾 ⊗ 𝑋 )𝑛 =
⊔
𝐾𝑛

𝑋𝑛
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The structure maps are provided by 𝜙 : [𝑚] → [𝑛] inducing the map:⊔
𝐾𝑚
𝑋𝑚

⊔
𝐾𝑚
𝑋𝑛

⊔
𝐾𝑛
𝑋𝑛

⊔
𝜙∗

To form a functor · ⊗ ·, let 𝑋1 → 𝑋2 be a map in 𝑠C. This defines the levelwise map:⊔
𝐾𝑛

(𝑋1)𝑛
⊔
𝐾𝑛

(𝑋2)𝑛

Let 𝐾1 → 𝐾2 be a map in sSet. This defines a levelwise map:⊔
(𝐾1 )𝑛 (𝑋 )𝑛

⊔
(𝐾2 )𝑛 (𝑋 )𝑛

where appropriate (𝐾1)𝑛 copy of 𝑋𝑛 is mapped to an appropriate (𝐾2)𝑛 copy of 𝑋𝑛 according to
the simplicial map 𝐾1 → 𝐾2.

Theorem 2.13. Let C be both complete and cocomplete. The coproduct tensor functor · ⊗ · :
sSet × 𝑠C → 𝑠C allows us to define 𝑠C as a simplicially enriched category with

hom𝑠C (𝑋,𝑌 )𝑛 = hom𝑠C (Δ𝑛 ⊗ 𝑋,𝑌 )

Proof. Quite long and technical so we skip it. Refer to Jardine Chapter-2 Theorem 2.5. □

Theorem 1.17 allows to define various examples. PickC to be any ofGrp,AbGrp,Rings,R − mod,
etc. Then 𝑠C is a simplicially enriched category.

2.4 Examples of simplicial model categories

Just as before, we’d like to discuss when we can form 𝑠C into not only a simplicially enriched
category but also a simplicial model category. There are many ways to form one. However,
if we wish to use the simplicial enrichment structure described in theorem 1.17, we’d like to
discuss when the simplicially enriched structure is preserved by an adjunction in a certain sense.
Let C : 𝐹 ⇄ 𝐺 : D be an adjunction with 𝐹 ⊣ 𝐺 between two simplicially enriched categories
C and D.

Lemma 2.14. Suppose that for all𝐾 ∈ sSet and𝐴 ∈ C, there is a natural isomorphism 𝐹 (𝐾 ⊗𝐴) =
𝐾 ⊗ 𝐹 (𝐴). Then,

1. The adjunction extends to a natural isomorphism

homD (𝐹𝐴, 𝐵) � homC (𝐴,𝐺𝐵)

2. For all 𝐾 ∈ sSet and 𝐵 ∈ D, there is a natural isomorphism

𝐺 (𝐵𝐾 ) � 𝐺 (𝐵)𝐾

16
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Proof. 1. Note that

homD (𝐹𝐴, 𝐵)𝑛 � homD (Δ𝑛 ⊗ 𝐹𝐴, 𝐵) � homD (𝐹 (Δ𝑛 ⊗ 𝐴), 𝐵)

2. Note that

homC (𝐴,𝐺 (𝐵𝐾 )) � homC (𝐹𝐴, 𝐵𝐾 ) � homC (𝐾 ⊗ 𝐹𝐴, 𝐵) � homC (𝐹 (𝐾 ⊗ 𝐴), 𝐵)

□

Consider any category 𝑠C such that there is a pair of adjoints 𝐺 : 𝑠C ⇄ sSet : 𝐹 with 𝐹 ⊣ 𝐺 .
Define the “tentative” model structure on 𝑠C by setting any morphism 𝑓 : 𝐴 → 𝐵 in 𝑠C to be:

1. a weak equivalence if 𝐺𝑓 is a weak equivalence in sSet

2. a fibration if 𝐺𝑓 is a fibration in sSet

3. a cofibration if it has the left lifting property with respect to all trivial fibrations in 𝑠C.

Theorem 2.15. If C is complete, co-complete, and 𝐺 preserves filtered colimits then 𝑠C is a model
category provided certain nice condition on cofibrations.

Proof. Long and technical so we skip it. □

Theorem 2.16. Let 𝑠C be as above in theorem 1.19. Then it is a simplicial model category with
the simplicial enrichement provided by the theorem 1.17.

Proof. Let 𝐾, 𝐿 ∈ sSet. We notice that 𝐹 (𝐾 × 𝐿) = 𝐾 ⊗ 𝐹 (𝐿). This is because any cartesian
product 𝐾𝑛 × 𝐿𝑛 of sets can be regarded as a coproduct of 𝐾𝑛 copies of 𝐿𝑛 and that 𝐹 as a left
adjoint preserves colimits. Consequentially, we will obtain that𝐺 (𝐵𝐾 ) � 𝐺 (𝐵)𝐾 where 𝐵𝐾 ∈ 𝑠C
and 𝐺 (𝐵)𝐾 ∈ sSet.

Pick any 𝑋,𝑌 ∈ 𝑠C such that 𝑞 : 𝑋 → 𝑌 is a fibration in 𝑠C. And let 𝑖 : 𝐾 → 𝐿 be a cofibration
in sSet. We want to show that the map

𝑋𝐿
(𝑋 𝑖 ,𝑞𝐿 )
−−−−−−→ 𝑋𝐾 ×𝑌𝐾 𝑌𝐿

is a fibration in 𝑠C. And that, it is trivial in 𝑠C if 𝑖 or 𝑞 is trivial. From the definition of fibrations,
weak equivalences in 𝑠C and that 𝐺 as a right adjoint preserves limits, this is the same as
checking that the map

𝐺 (𝑋 )𝐿
(𝐺 (𝑋 )𝑖 ,𝐺 (𝑞)𝐿 )
−−−−−−−−−−−−→ 𝐺 (𝑋 )𝐾 ×𝐺 (𝑌 )𝐾 𝐺 (𝑌 )𝐿
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2 Simplicial Model Categories

is a fibration in sSet. And that, it is trivial in sSet if 𝑖 or 𝐺 (𝑞) : 𝐺 (𝑋 ) → 𝐺 (𝑌 ) is trivial. Recall
that 𝐺 (𝑞) : 𝐺 (𝑋 ) → 𝐺 (𝑌 ) is a (trivial)-fibration in sSet iff 𝑞 : 𝑋 → 𝑌 is a (trivial)-fibration 𝑠C
by definition. Now the statement holds due to SM7 of simplicial sets.

Theorem 1.20 allows us to consider many examples such as simplicial groups, simplicial abelian
groups or simplicial 𝑅-modules by using 𝐺 as the forgetful functor. Although, we do not go
into the detail due to time.

□
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